Modelling apical constriction in epithelia using elastic shell theory.

نویسندگان

  • Gareth Wyn Jones
  • S Jonathan Chapman
چکیده

Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory

In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are  obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...

متن کامل

Third Order Formulation for Vibrating Non-Homogeneous Cylindrical Shells in Elastic Medium

Third order shear deformation theory of cylindrical shells is employed to investigate the vibration characteristics of non-homogeneous cylindrical shells surrounded by an elastic medium. The kinematic relations are obtained using the strain-displacement relations of Donnell shell theory. The shell properties are considered to be dependent on both position and thermal environment. A suitable fun...

متن کامل

Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory

In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...

متن کامل

Assessment of Root Morphology and Apices of First and Second Maxillary Molars in Tehran Population

     Introduction: Objective: This study aimed to assess the possible variations in root canal anatomy and topography of the apices of first and second maxillary molars. Materials and methods: A total of 67 first and second maxillary permanent molars were collected. Access cavity was prepared and 2% methylene blue was injected. The teeth were demineralized by 5% nitric acid and cleared with met...

متن کامل

Validation of Shell Theory for Modeling the Radial Breathing Mode of a Single-Walled Carbon Nanotube (RESEARCH NOTE)

In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2010